

		Curriculum - Overview			
Year 7 Year	8 Year 9	Year 10	Year 11	Year 12	Year 13
During Year 7, students start to develop their ideas from KS2 about energy, forces, waves and space.During Year 8, continue to de their understa substances, st matter, chemic changes and s build upon KS knowledge ab Earth and rockWe build working scientifically skills into our science curriculum. This includes;build upon KS knowledge ab Earth and rock• Basic safety • Measuring accurately and unitsWe continue for their working scientifically skills into our science curriculum. This includes;• Basic safety • Measuring accurately and unitsWe continue for their working scientifically skills into our science curriculum. This includes;• Calculating averages and identifying errorsWe continue for their working scientifically skills• Calculating averages and identifying and selecting tablesMethor energy scientifically skills• Identifying and selecting tablesPatter• Creating simple methodsGraphs s• Patterns in dataConcl	studentsDuring Year 9 studentsevelopcomplete their KS3anding ofwork on the periodictates oftable and rocks. Later inicalthe year students movestart ofonto GCSE content andbout theunderstanding ofks.energy further.build onWorking scientificallyskills,continued in KS3 anddevelop these skillsfurther at GCSE.statingPrecision andaccuracyEvaluating riskbuilty,Method creationsion andDesigning furtheraccyDesigning furtherng dataPatterns andattingSupport datast fitGCSE core practicalwork further enhanceswork further enhancesst sig andstudents carry out:	Information in bold isonly relevant toseparate sciencestudents.During Year 10 studentsbuild further theirunderstanding ofsubstances and atomicstructure, byinvestigating types ofbonding., calculationslinking to chemistry,topics related tochemical changes andthe periodic table.Core practical workfurther enhancesstudents carry out: ElectrolysisRates of reactionAcid-alkalititration These core practical piecesare carried out by combinedstudents in Year 11Investigating pHPreparation ofcopper sulfate	Information in bold is only relevant to separate science students. During Year 11 students continue to build their understanding of ions, elements, chemical reactions and chemistry calculations. They start to build an understanding of organic chemistry, by looking at a range of organic molecules. Core practical work further enhances student skills. In Year 11 students carry out: Identifying ions Combustion of alcohols	The initial topics of atomic structure, Amount of substance and Bonding build upon a student's KS4 knowledge. Proceeding topics have strong links to KS4 content covering energetics, kinetics (rates of reaction), equilibrium and characteristics of the Periodic table. Organic chemistry builds upon carbon based substantive knowledge learnt at KS4 but also introduces new organic chemistry homologous series not studied during KS4. Practical based investigative chemistry is used throughout the curriculum to reinforce substantive knowledge and build upon disciplinary knowledge.	In Year 13 students develop their knowledge from Year 12 to gain deeper knowledge of the key aspects of physical, inorganic and organic chemistry. The initial topics of thermodynamics and rates build upon the energetics and kinetics topics covered in Year 12. Other topics; electrode potentials and cells, and acids and bases extent as student's knowledge of physical chemistry. In inorganic chemistry the students extend their knowledge of the elements in the Periodic table, covering trends in Periods and transition metal chemistry.

	 Global connectivity Role of research 	 Investigating the composition of inks 				
		Cui	rriculum – Topic Sequenc	ting		
Year 7	Year 8	Year 9	Year 10	Year 11	Year 12	Year 13
C1: Materials	C7: Earth's resources	C14: The periodic table	Ionic bonding	Fuels	Physical chemistry	Students broaden their
Students build upon	Students build upon KS2	Students build upon	This topic starts to	Students build upon	Atomic structure	knowledge of organic
their KS2 learning about	knowledge of the Earth,	their understanding of	develop student	their KS3 knowledge of	Students build upon	compounds, the
materials and their	by developing their	atoms and elements. In	understanding in how	chemical reactions and	their KS4 chemical	transformations
properties. They focus	ideas of rock and	this topic they develop	particles in substances	air pollutants. This is	properties of elements	between each other
on the properties that	minerals. They focus on	their understanding of	are held together. We	students first real	knowledge and link this	and their characteristic
can be used to classify	the interior structure of	the pattern in physical	investigate how ionic	introduction to organic	to the way in which	properties and
materials. Composite	the Earth, plate	and chemical properties	substances form	chemistry. They learn	elements are organised	reactions. In addition,
materials are examined	tectonics and the	within the periodic	between metal and	about the mixture of	in the Periodic Table.	students expand their
and practically	formation of igneous	table and looking at	non-metal atoms, the	hydrocarbons we call	The principles and	application of
investigated.	rocks.	similarities. Enhance	means of an ionic bond	crude oil. During this	operation of a modern	spectroscopy
		their understanding of	and looking at	topic students focus on	mass spectrometers are	techniques used in the
C2: Substances and	C8: Understanding	atoms and the nucleus	explaining the	how useful substances	studied and linked to	elucidation of organic
mixtures	chemical reactions	of an atom, whilst	properties these	are extracted from	the determination of	compounds.
Students build upon	Students build upon	comparing the particle	substances have.	crude oil and how large	atomic structure.	
their KS2 knowledge of	their understanding of	and atomic model.		hydrocarbons can be	Students gain a deeper	Physical chemistry
solutions and some	chemical changes. They		Masses and empirical	cracked to create more	understanding of the	Thermodynamics
methods of separating	focus on the way in	C15: Rock changes	formula	useful substances.	arrangement of	Students use Born-
mixtures. Students	which chemical	Student build on their	We have split the	They develop their	electrons in an atom	Haber cycles to
investigate solutions in	reactions can be shown	understanding of rock,	calculations involving	understanding of how	and how this influences	calculate lattice
more depth and	through word and	weathering and erosion	mass, into more	air pollutants are	ionisation energies.	enthalpies. They then
investigate a wider	formula equations.	to investigate the three	manageable chunks.	created and from		dive into the world of
range of method of	They build knowledge	types of rock and how	This part of the topic	combustion of fuels and	Amount of substance	entropy and disorder in
separating mixtures.	about the law of	they create the rock	looks at relative formula	the dangers associated	The application of	chemical systems, using
	conservation of mass.	cycle.	mass, how we calculate	with this. Investigating	mathematical concepts	Gibbs free-energy
	Through theory and		the percentage of an	different fuels, students	to chemistry underpins	changes to calculate
	practical work, they		element in a substance	learn how to evaluate	A level Chemistry. In	feasibility conditions for
	investigate types of		and calculating	fuels for different	this topic students re-	reactions.
	chemical reactions			purposed	visit and apply the	

	including displacement reactions in solution and combustion.		empirical and molecular formula.		concept of the 'mole' in more complex chemistry calculations.	
C3: Elements and	C9: The atmosphere	GCSE	Electrolytic processes	Reversible reactions	Bonding	Rate equations
compounds	Building upon student		Students build upon	and equilibria	Students build upon	The elucidation, using
Students develop their	work on the Earth, they	States of matter and	their understanding to	Student push forward in	substantive knowledge	tabulated and graphical
ideas about substances.	expand this to	mixtures	investigate how ionic	their understanding of	studied in KS4	data, and the
They focus on atoms	investigate the	Student build upon KS3	substances can be	how chemical reactions	chemistry. Ionic,	application of a rate
and molecules, building	atmosphere. They look	knowledge about states	decomposed using	happen to look at	covalent and metallic	equation to explain
up to elements and	at the composition of	of matter and changes	electricity. They focus	examples of reaction	structures and	changes in rates of
compounds. Students	the atmosphere and	of state, linking to	on molten electrolysis,	that can reverse and	properties are all	reaction is covered in
start to link structure to	focus on air pollutants	particles and energy.	aqueous electrolysis	move backward. This	revisited in more detail.	this topic. Students
the physical properties	and how pollutants can	Students enhance their	and investigate how	includes looking at the	In addition, forces	then graphically
of substances. Element	spread.	understanding by	electrolysis is used to	Haber process and the	between molecules are	manipulate the
symbols and chemical		comparing the	purify copper.	production of ammonia.	extensively discussed,	Arrhenius equation to
formula are explored.	C10: Understanding	properties of pure		Higher tier students	and how the	determine activation
	evaporation	substances and	Covalent bonding	develop their	arrangement of the	energies for reactions.
C4: Polymers	Students investigate	mixtures and using this	Students continue to	understanding further,	electrons and their	
Students continue their	how a mixture of liquids	to make predictions.	look at how particles in	by looking reversible	repulsive nature leads	Equilibrium constant,
thinking about	can be separated		substances are held	reactions that reach	to different molecular	Kp
materials and focus on	through distillation.	Atomic structure	together. We	equilibrium and the	shapes.	Building upon
polymers. They focus	They build upon their	Students build upon	investigate covalent	factors that can affect		knowledge covered in
on process of making a	understanding to look	their understanding of	bonding and how non-	the concentration of	Energetics	Year 12 students
polymer and the	at the reason for	atoms and being to	metals atoms are held	reactants and products	In A level Chemistry	consider how the
properties of polymers.	evaporation and how	appreciate sizes. They	together in molecular	within the mixture.	students build on their	mathematical
Students explore	this compares to	learn fundamental	substances.		understanding of	expression for the
alternative to using oil	boiling.	skills; such as the use of		Atmospheric science	exothermic and	equilibrium constant Kp
and plastics, whilst		the mass and atomic	Conservation of mass	Student build upon	endothermic reactions.	enables us to calculate
evaluating our use of	C11: Heat energy	number of work out the	This build upon the	their KS3 knowledge of	The explanation and	equilibrium yields of
plastics.	changes in chemical	number of sub-atomic	calculations using mass	gases within the	measurement of energy	gaseous systems. This
	reactions	particles in an atom.	topic. Students develop	atmosphere and air	(enthalpy) changes and	has important
		This work is developed	an understanding of	pollutants to investigate	their application in Hess	

C5: Comparing	Students build upon	further to build and	how during chemical	how the Earth's	cycles allows students	consequences for many
solubility	their understanding of	understanding of	reaction mass is	atmosphere evolved	to gain a deeper insight	industrial processes.
Students continue to	chemical reactions to	isotopes and how they	conserved. This	since the formation of	into the	
develop their	look at how	link to an elements	concept is used to	the Earth around 4.5	thermochemical	
understanding of	temperature changes	relative atomic mass.	predict, through	billion years ago. This	changes that occur in	
solutions and solubility,	during a chemical		calculations, the mass	then builds upon their	chemical reactions.	
including the use of	change. This includes	Separating techniques	of products made, or	work at KS3 and in the		
different solvents.	investigating	Building upon student	reactants used. We	fuel unit, to examine	Kinetics	
	endothermic and	understanding of	also start to develop the	the evidence for climate	The rates of chemical	
	exothermic reactions	mixtures and	skill of balancing	change and the role of	reactions is an	
	and starting to build an	distillation, they expand	chemical equations	greenhouse gases.	important topic during	
	explanation about how	their understanding of	during this topic.		a student's KS\$	
	the temperature	different mixtures and			chemistry studies. At A	
	changes during these	the range of separating			level this is re-	
	reactions.	techniques used. This			addressed to include	
		includes simple			the kinetics of	
		filtration, evaporation			molecules and how	
		and chromatography.			these determine the	
					rate of a reaction.	
C6: Chemical changes	C12: Acid and Alkali	The periodic table	Heat energy changes in	Quantitative analysis:	Chemical equilibria	Electrode potentials
Students start to build	Students investigate	Students build upon	chemical reactions	yields and atom	Building on their KS4	and electrochemical
upon their KS2	acid, bases and alkalis.	their understanding of	We expand on students	economy	knowledge of	cells
understanding about	m They look at how we	the periodic table to	understanding of	Students learn how to	LeChatelier's principle,	Students studied redox
chemical changes and	can classify these	investigate the history	endothermic and	calculate percentage	students deepen their	reactions in Year 12,
physical changes. This	substances using	of how the periodic	exothermic reactions,	yield and atom	knowledge by using	and they now
includes, how	indicators and the pH	table developed. The	through more Indepth	economy. They learn	mathematical models to	extrapolate this
compounds are made,	scale. Building on their	focus on the structure	explanations and how	about the two	explain reactions in	knowledge to
physical and chemical	knowledge of chemical	of the periodic table	graphs can show heat	calculations role in	equilibrium.	electrochemical cells
changes, how we can	reactions, neutralisation	and how this links to	energy changes. Higher	industry. Students		and the generation of a
observe chemical	is developed.	atomic structure.	tier students use	learn about why	Redox equations	potential difference.
changes and thermal			calculations to work out	percentage yield is	The concept of	Students learn how to
decomposition	C13: Weathering and		how much energy is	never 100%, but atom	reduction and oxidation	correctly represent cells
reactions.	Erosion		released or absorbed	economy can be.	was introduced during	and use standard
					KS4 chemistry studies.	electrode potentials to

Building upon student	during a chemical	Hydrocarbons	Within A level	predict the direction of
understanding about	reaction.	Students build on their	Chemistry more	redox reactions. In
the Earth and rocks,		work on hydrocarbons	complex	addition, students study
students develop their	Concentration	to understand two	reduction/oxidation	commercial
understanding of the	Continuing with	main groups of	(redox) situations, the	rechargeable (fuel cells)
method of weathering	calculations linked to	hydrocarbons; alkanes	introduction of	and non-rechargeable
rocks and the causes of	mass, students learn	and alkenes. This	oxidation states and the	cells and use electrode
erosion.	how to calculate the	included some of their	use of redox in	potentials to deduce
	concentration of	reactions, such as	explaining chemical	the reactions that
	solutions.	addition in alkenes,	reactions is introduced.	occurring inside the
		and how alkenes can		cells.
	Rates of reaction	be used to make	Inorganic chemistry	
	Build upon students	polymers.	Periodicity	
	understanding of		The ability of students	
	chemical reaction, we		to explain trends in	
	focus on measuring the		atomic radius,	
	speed of chemical		ionisation energies and	
	reactions and factors		melting points for the	
	that affect the speed of		elements in Period 3 of	
	a chemical reaction.		the Periodic table builds	
	Students develop		on basic trends and	
	practical and graphical		patterns learnt in KS4.	
	skills, including			
	measuring the gradient			
	on a graph to determine			
	rate.			
	Types of substances	Transition metals,	Group 2 & Group 7	Acids and bases
	Students build on their	alloys and corrosion	At KS4 students learnt	Students build upon
	understanding of ionic	Students investigate	about the group	their KS4 knowledge of
	and covalent	the properties of	chemistry of group 1	acids and bases,
	substances, by looking	transition metals and	and group 7. Students	employing
	at metallic substances	how metals can	build upon this	mathematical
	and how metal atoms	corrode, focusing on	knowledge by studying	expressions to calculate
	are held together and	iron. They build on	the chemistry of group	values for pH and
	the structure they	their understanding of	2 and then deepening	equilibrium constants

create. They expand	electrolysis to look at	their understanding of	for weak and strong
beyond covalent	how metals are plated	the properties of group	acids and bases.
molecular structures by	and the impact that	7.	Furthermore, students
comparing these	metals alloys have on	<i>.</i>	develop their
structures to giant	their properties. They	Organic chemistry	understanding in the
covalent structures.	investigate how iron	Introduction to organic	use of titrations and
This leads to different	can be protected and	chemistry	indicators first
covalent substances	the uses of		
made from carbon		Students extensively develop their	practically used at the start of Yer 12.
	electroplating and	•	
atoms and the	alloys.	substantive knowledge	The explanation of how
properties these		of organic molecules	buffers work and
substances have.	Quantitative analysis:	throughout A level	calculation of operating
Comparing all type of	concentration and	Chemistry. At KS4 the	pH's of buffers is also
bonding and structure	titrations	plethora of organic	included in this topic.
enable students the	Students build on their	based substances was	
ability to see similarities	learning about the	only introduced,	Inorganic chemistry
and difference in	mole and use this to	students now begin to	Properties of Period 3
properties and how we	calculate	name, using	The reactions of the
explain these.	concentration. They	international	Period 3 elements with
	focus on the use of	nomenclature, and	oxygen are considered
Groups in the periodic	acid-alkali titrations to	draw more complex	in this topic. Students
table	determine the	organic molecules.	look at further trends,
Students build upon	concentration of an		including the pH of
their understanding of	unknown acid or alkali.	In addition, the reaction	solutions of oxides.
the periodic table to	This is carried out	mechanisms that	
focus on specific	practically, using	underpin organic	Transition metals
groups. We investigate,	indicators they have	chemistry are	At KS4 the transition
group 0, 1 and 7. This	learned about in Y10	introduced and applied	metals are introduced.
includes looking at	and through	to organic synthesis,	Here, students build
trends in physical and	calculations	and knowledge of the	upon their KS4
chemical properties.		different structural	knowledge of the
We build on KS3	Alcohols and carboxylic	arrangements of atoms	properties of the
knowledge of	acids	in an organic molecule	transition metals,
displacement reactions,	Students build on their	(isomerism) are	consider how they
by focusing on these	organic chemistry	developed.	behave in substitution
_,	- 0		

	7 v e u a e ic f f r	reactions within group 7. Chemical trends within groups are explained, using their understanding of atomic structure, electron structures and onic bonding. Group 0 focuses on their lack of reactivity and how we use these elements.	knowledge, related to hydrocarbons to investigate other organic molecules: alcohols and carboxylic acids. This includes; the scientific naming and drawing of molecules and how these molecules can react, including combustion. Students focus on more depth on alcohols and ethanol production.	Alkanes and halogenoalkanes In KS4 students learnt about the separation and processing of the simplest series of organic molecules. At A level this knowledge is built upon to include the reactions of the alkanes and their link to ozone depletion.	reactions, and examine the shapes of complex ions produced by transition metals. They also look at the range of coloured compounds produced by transitions and how their properties allow them to be utilised as catalysts in industry.
	ii c c s Y C m s s r h e e t t c c a	These final three topics in Year 10, are completed by combined science students at the start of Year 11. Obtaining and using metals Student focus on the reactivity of metals and how metals are extracted dependent on their reactivity. They develop their ideas around the terms, oxidation and reduction	Quantitative analysis: Molar volumes of gases Students continue developing their use of the mole, to build an understanding around gases. They use this to calculate gas volumes. Dynamic equilibria Students build on their understanding of reversible reactions and equilibria to focus on the rate of reaching equilibrium. This is linked to chemical	Alkenes Students observe and evaluate the use of alkenes in polymerisation in KS4. At A level a student's knowledge of the structure, bonding and reactivity of the alkenes is greatly deepened. Alcohols Students build on a basic knowledge of the structure, synthesis and reactions of alcohols learnt within the KS4	Reactions of ions in aqueous solutions The reactions of transition metal ions in aqueous solution allow students to develop their practical knowledge to show and to understand how transition metal ions can be identified by test-tube reactions in the laboratory. Organic chemistry Optical isomerism

	with half equations being introduced. Students also look at industry and the purpose of a LCA – life cycle assessment.Acid and Alkali Students build on their KS3 knowledge of acids, bases and alkali to investigate a wider range of indicators and the pH scale in more depth. Skills build as they look at the numerical relationship between different pH values, use this concept in calculations and show neutralisation in a graphical way. An introduction to apparatus, such as a burette and a more accurate pipette.Moles	industry and how chemicals are produced to create chemical fertilisers. Polymers Building on student understanding of the addition reaction that alkenes undertake to create polymers, students focus on other types of polymers. These polymers directly link to alcohols and carboxylic acids and student learn how they are created by condensation reactions. A focus on all polymers allows students to investigate the uses of these substances and the environmental issues associated.	Chemistry curriculum. Students learn about the oxidation of alcohols to produce other series of organic compounds. Organic analysis The elucidation of the structure and the functional group of an organic compound is vital for the development of future useful organic molecules. In this topic students learn how to use chemical reactions and analytical techniques (mass spectrometry and infra- red spectroscopy) to determine the molecular formula and particular bonds within an organic compound.	Students study the chirality within organic substances and linking this to a special type of isomerism. Aldehydes and ketones The carbonyl functional group, its reactions and the chemical tests to distinguish between aldehyde and ketone compounds is examined in this topic. Carboxylic acids and derivatives The oxidation products of aldehydes; acidic carboxylic acids and further derivatives, such as the fruity smelling esters, acid anhydrides, and acyl chlorides are discussed. Their use in further organic synthesis reactions to produce important chemicals are studied. Aromatic chemistry
	Student build upon their calculation work to develop an	Testing for ions Students investigate how we can test for the		The structure and bonding and the extensive range of

understanding of a	presence of different	organic compounds
chemistry	ions in solutions. We	based around aromatic
measurement unit	look at flame testing	rings is considered in
called a mole. Students	and analytical use of	this topic.
use the concept of the	photometry. Students	·
mole in a variety of	practical investigate	Amines
calculations, which we	the chemical tests for a	In KS4 students came
will continue to develop	range of positive and	across ammonia-based
in Year 11.	negative ions.	compounds. At A level
		this knowledge is built
	Chemical cells and fuels	upon with respect to
	cell	the properties and
	Students developing	reactions of organic
	their understaning of	compounds based on
	ions and electricity to	ammonia.
	learn about how	
	chemical cells and fuels	Polymers
	cells work to produce	To build upon
	electricity. This	knowledge learnt in KS4
	included considering the application of these	and extended during
	type of cell.	the first year of A level,
	type of cen.	students develop their
	Bulk and surface	knowledge of
	properties of matter	biodegradable
	Student build upon	polymers.
	their KS3	polymers.
	understanding of	Amino acids, proteins
	materials to investigate	and DNA
	in more depth,	Students would have
	including composite	learnt of the proteins
	materials. We look at	and amino acids in KS4
	nanoparticles and how	
	when particles get very	Biology. In A level
	small, this can impact	Chemistry the

		on the properties they	structures and links to
		display.	enzymes, DNA and drug
			action are considered.
			Organic synthesis
			Students apply their
			knowledge of all the
			series of organic
			compounds they have
			learnt throughout their
			A level studies to
			organic synthesis
			pathways
			Nuclear magnetic
			resonance
			spectroscopy
			In addition to the
			spectroscopy and
			analytical techniques
			used in structure
			determination in year 1
			of A level studies,
			students now learn how
			to use the technique of
			nuclear magnetic
			resonance spectroscopy
			to fully elucidate
			organic compound
			structures.
			Chromatography
			Students studied
			chromatography and

			the separation of
			mixtures in KS3 and
			KS4. At A level students
			build upon this
			knowledge and study
			three different types of
			chromatography; thin
			layer, column and gas
			chromatography. They
			then apply these
			techniques to the
			separation and
			identification of organic
			compounds.